A Zn-finger/FH2-domain containing protein, FOZI-1, acts redundantly with CeMyoD to specify striated body wall muscle fates in the Caenorhabditis elegans postembryonic mesoderm.
نویسندگان
چکیده
Striated muscle development in vertebrates requires the redundant functions of multiple members of the MyoD family. Invertebrates such as Drosophila and Caenorhabditis elegans contain only one MyoD homolog in each organism. Earlier observations suggest that factors outside of the MyoD family might function redundantly with MyoD in striated muscle fate specification in these organisms. However, the identity of these factors has remained elusive. Here, we describe the identification and characterization of FOZI-1, a putative transcription factor that functions redundantly with CeMyoD (HLH-1) in striated body wall muscle (BWM) fate specification in the C. elegans postembryonic mesoderm. fozi-1 encodes a novel nuclear-localized protein with motifs characteristic of both transcription factors and actin-binding proteins. We show that FOZI-1 shares the same expression pattern as CeMyoD in the postembryonic mesodermal lineage, the M lineage, and that fozi-1-null mutants exhibit similar M lineage-null defects to those found in animals lacking CeMyoD in the M lineage (e.g. loss of a fraction of M lineage-derived BWMs). Interestingly, fozi-1-null mutants with a reduced level of CeMyoD lack most, if not all, M lineage-derived BWMs. Our results indicate that FOZI-1 and the Hox factor MAB-5 function redundantly with CeMyoD in the specification of the striated BWM fate in the C. elegans postembryonic mesoderm, implicating a remarkable level of complexity for the production of a simple striated musculature in C. elegans.
منابع مشابه
An unusual Zn-finger/FH2 domain protein controls a left/right asymmetric neuronal fate decision in C. elegans.
Gene regulatory networks that control the terminally differentiated state of a cell are, by and large, only superficially understood. In a mutant screen aimed at identifying regulators of gene batteries that define the differentiated state of two left/right asymmetric C. elegans gustatory neurons, ASEL and ASER, we have isolated a mutant, fozi-1, with a novel mixed-fate phenotype, characterized...
متن کاملThe myogenic potency of HLH-1 reveals wide-spread developmental plasticity in early C. elegans embryos.
In vertebrates, striated muscle development depends on both the expression of members of the myogenic regulatory factor family (MRFs) and on extrinsic cellular cues, including Wnt signaling. The 81 embryonically born body wall muscle cells in C. elegans are comparable to the striated muscle of vertebrates. These muscle cells all express the gene hlh-1, encoding HLH-1 (CeMyoD) which is the only ...
متن کاملFunctional conservation of nematode and vertebrate myogenic regulatory factors.
The Caenorhabditis elegans protein, CeMyoD, is related to the vertebrate myogenic regulatory factors MyoD, myogenin, MRF-4 and Myf-5. Like its vertebrate counterparts, CeMyoD accumulates in the nucleus of striated muscle cells prior to the onset of terminal differentiation. CeMyoD also shares functional similarities with the vertebrate myogenic regulatory factors. Viral LTR driven expression of...
متن کاملA C. elegans E/Daughterless bHLH protein marks neuronal but not striated muscle development.
The E proteins of mammals, and the related Daughterless (DA) protein of Drosophila, are ubiquitously expressed helix-loop-helix (HLH) transcription factors that play a role in many developmental processes. We report here the characterization of a related C. elegans protein, CeE/DA, which has a dynamic and restricted distribution during development. CeE/DA is present embryonically in neuronal pr...
متن کاملAnterior organization of the Caenorhabditis elegans embryo by the labial-like Hox gene ceh-13.
The Caenorhabditis elegans lin-39, mab-5 and egl-5 Hox genes specify cell fates along the anterior-posterior body axis of the nematode during postembryonic development, but little is known about Hox gene functions during embryogenesis. Here, we show that the C. elegans labial-like gene ceh-13 is expressed in cells of many different tissues and lineages and that the rostral boundary of its expre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 134 1 شماره
صفحات -
تاریخ انتشار 2007